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Abstract 

 

This investigation brings together response time, system identification methodology (e.g., 

Townsend & Wenger, 2004a) along with accuracy methodology intended to assess models of 

integration across stimulus dimensions (features, modalities, etc.) proposed by Marilyn Shaw and 

colleagues (e.g., Mulligan & Shaw, 1980).  The goal was to examine these separate strategies 

theoretically and to apply them conjointly to the same set of participants. The empirical phases 

were carried out within an extension of an established experimental paradigm (e.g., Townsend & 

Nozawa, 1995). With respect to the accuracy measure, we point out potential mimicries between 

parallel and serial models and a number of interesting facets differentiating (or not) the various 

accuracy and response time models.  Despite the parallel-serial mimicry of the accuracy models, 

the independence found in the accuracy data is convergent with the response time results.  The 

conclusions support an overall model, consistent across individuals, based on limited capacity, 

parallel processing, with the participants employing the appropriate decision rule.   

 

 

 

 

Key words: Response Time, Accuracy, Parallel Processing, Redundant Targets, Interaction 

Contrast, No Probability Response Contrast, Integration, Coactivation, OR task, AND task 
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When perceptual information is offered over more than a single channel, how are the 

separate sources combined?  This is a question that is not only central to basic human information 

processing but also possesses myriad potential applications from clinical science to human 

factors and engineering. Our goal was to bring together two previously distinct approaches that 

can combine to provide strong converging evidence about some of the critical properties.  Neither 

of the two methodologies covers all the ground by itself. Furthermore, the fact that the 

approaches are applicable to the two primary measures of performance in psychological research, 

response accuracy and response times (hereafter, RTs), amplifies the robustness of the inferences 

they enable regarding the mechanisms underlying cognitive performance. 

With regard to the measure of response accuracy we build on the seminal efforts of M. 

Shaw and colleagues (e.g., Mulligan & Shaw, 1980; Shaw, 1982). Her work, in her own 

terminology, was oriented toward the issue of perceptual integration vs. separate processing of 

multiple inputs. A key ingredient in her approach was the “NO” response probability contrast 

(NRPC), which we define soon. Interestingly, the NRPC statistic uses a double difference of 

specific data, analogous to the double difference of RT statistics which are central to architectural 

tests based on that dependent variable (e.g., Townsend & Ashby, Chapter 12, 1983; Townsend & 

Wenger, 2004a). The NRPC statistic permitted Shaw and colleagues to disconfirm several classes 

of models and provide support for one (Mulligan & Shaw, 1980; Shaw, 1982) for the stimuli they 

considered.  

However, there are major questions which remain. Since the experiments used to test their 

models are all accuracy based, the models are, naturally enough, not given time-oriented, 

dynamic explanation. Thus, an important question asks about potential time-oriented, dynamic 

models that seem to be natural extensions of the static models studied by Shaw. More generally, 

we seek to enlist both response time and accuracy measures in order to more completely 
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understand underlying properties of perceptual systems.  An important advantage of the basic 

measures we consider in this study (both RT and accuracy measures), is that they are non-

parametric and are thus robust across many specific parameterized models. 

Our exposition is divided into a response-time section (Study I) and an accuracy section 

(Study II). We first present a new RT study (Experiment 1) employing the double factorial design 

and the systems factorial methodology devised for it (Townsend & Nozawa, 1995; see 

explication below). We further present a second new RT experiment with a different logical 

processing rule (Experiment 2).  In Study II we report a third new experiment with the Shaw-type 

paradigm and analyses involving accuracy (Experiment 3), and extend them by adding an 

experiment based on a different logical processing rule (Experiment 4), analogous to the novel 

design in our RT paradigm (Experiment 2).  

Following a discussion of the two sets of experiments, a unified theoretical framework is 

presented which permits placing the RT and accuracy based approaches within a common 

framework. In beginning, our general approach is outlined. We will then be in a position to 

interpret Shaw’s models within that extended theory and methodology. 

 

Basic Properties of the Human Information-Processing System 

When presented with signals from multiple sources, say, from two different spatial 

locations, there is a number of aspects of information processing that are basic in characterizing 

the perceptual or cognitive systems. A brief introduction to the major concepts will be given 

along with references to more detailed sources. 

First, within the issue of architecture, people may process both signals at the same time 

that is, in parallel, or process one first and then process the other, that is, serial processing. Also, 

the cognitive system may employ different stopping rules: it can complete the processing of both 
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signals, also called the exhaustive stopping rule, or it can halt processing after the completion of 

only one signal, the minimum-time or first-terminating stopping rule. 

Architecture (serial vs. parallel) and stopping rule are two of the properties of the human 

information processing system that have captured the interest of cognitive psychologists. Others 

include, for example, processing efficiency as a function of workload, known as workload 

capacity (e.g., Townsend & Ashby, 1983; Townsend & Wenger, 2004b).  The latter concept, 

when given precise meaning, measures the relative cost vs. benefit to performance when an 

additional channel or information source is added in the stimulus. Another property that appears 

in various guises is independence, and especially important in the present context, that of possible 

interdependencies between different processing channels.  

Systems factorial technology comprises a set of possible approaches to identifying the 

above system properties within a unified framework (Townsend, 1992; Townsend & Wenger, 

2004a). This approach entails an interrelated taxonomy for elementary cognitive processes 

(Townsend, 1974; Townsend & Ashby, 1983), augmented by a mathematical theory and 

associated experimental methodology (Townsend & Nozawa, 1995; Townsend & Wenger, 

2004a) to experimentally characterize the psychological system of interest. The systems factorial 

methodology employs response times for assessing the different dimensions of processing.  

The redundant-target task had been proven useful in studying the above issues. In one 

version of such a task, participants may be presented with a target signal on one location, on 

another, or on both (there also exists a non-target display, which, depending on the particular 

procedure, can be either blank or comprised of non-target items). Participants are instructed to 

respond affirmatively if they detect at least one target, i.e., if a target appears in one location, or 

the other, or both (a disjunctive rule), hence the name OR task. The condition where two targets 
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appear is called a redundant target (sometimes double target) condition, since one target is 

sufficient for the participant to respond affirmatively. 

In a kind of opposite task, the same stimulus-types as in the OR design may appear but 

now the instructions are to respond “YES” if and only if both locations are occupied by targets, 

i.e., if there is a target in one location and in the other (a conjunctive rule) and therefore the name 

AND task. In each basic design, in principle, participants might extract information from the two 

spatial locations serially, in parallel, or in some hybrid fashion. The choice of stopping rule, 

however, should be dictated by the task demands, if participants are to conform to the 

instructions and perform accurately with most efficiency. Thus, in the OR design while a 

participant might still process both targets on a redundant trial, due to choice or inability to do 

otherwise, such an option is not as efficient as stopping as soon as the first is completed. 

Conversely, in an AND task, the task imposes an exhaustive stopping rule.1 

Except for serial and parallel modes of processing, another important type of architecture 

is again parallel but rather than each channel handling its own detection, it is assumed that the 

information or activation within each channel is added together with that from the other channel 

in a subsequent pooled outlet. This final pooling channel possesses a detector-criterion for 

deciding if, at any point in time, there is sufficient support to report the presence of a signal, from 

either or both input channels.  In the redundancy literature, this type of system is typically 
                                        
1 There is an inherent duality between “YES” vs. “NO responses that logically interacts with the stopping rule. In the 
first OR experiment, where we focus on RT, the “YES” responses are of interest but in the second, where accuracy is 
targeted, and following Shaw, the “NO” responses come into play.  Hence, we need to outline the appropriate 
stopping rule in each case.  Within our system, a “NO” response can occur only by attempting to ensure that neither 
channel contains a signal.  Hence, with an OR design, there is virtually an AND stopping rule with regard to the 
“NO” decision.  Conversely, in an AND design (to respond “YES”, the participant must make sure there is a signal 
in each channel), a “NO” decision becomes in effect, an OR trial, since if either channel delivers a “no-signal” 
decision, the overall decision can be “NO” and processing can cease with the first “NO” decision to occur.  
   Assume for the time being then, that participants are indeed able to use a minimum-time stopping rule with an OR 
task on double target trials; this is testable with our tools. Exhaustive completion of negative decisions is required to 
say “NO” on no-target trials. On the other hand, if processing is serial, a minimum time rule will deliver an average 
of performance from the two single target conditions on “YES” trials (e.g., Townsend, 1974).  By symmetry, a “NO” 
response like the parallel model just above, demands exhaustive serial negations on both channels. 
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referred to as a coactive system, or model thereof (e.g., Colonius & Townsend, 1997; Diederich 

& Colonius, 1991; Miller, 1982; Schwarz, 1994;  Townsend & Nozawa, 1995; Houpt & 

Townsend, 2011).  For a “NO” response to occur, it must be the case that the added activations 

fail to meet the criterion, but the logical notion of a stopping rule of course becomes vacuous. 

This is because the decision threshold is only assessing activation on the single ‘final’ channel. 

Thus, a coactive system cannot, in a logical sense, perform certain versions of AND tasks 

because it cannot make separate decisions on the different channels.  Nonetheless, a coactive 

model could, in principle, simply increase its decision criterion so as to minimize mistakes when 

only one or no signal is present. A coactive system with a single, common detection mechanism 

that aggregates activation from all channels before decision is illustrated in Figure 1b, and can be 

compared with a separate-channel parallel system in Figure 1a. 

 

 

Figure 1. A schematic illustration of parallel-independent (a) and coactive (b) architectures. 

 

Theoretical and Empirical Developments Brought by the Current Investigation 
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The current investigation pursues the issues of architecture, stopping rule, capacity, and 

independence. It involves both OR as well as the AND designs and formulates an RT study as 

well as an accuracy study, the latter following along the lines of Shaw and colleagues. Within the 

RT analyses, we can discern architecture, capacity, and stopping rule. Independence is indirectly 

and partially assessable within the RT paradigm (see section Workload Capacity). In contrast, 

independence appears as a major component in the predictions in the accuracy analyses and the 

stopping rule provides robust implications as well when the accuracy-based NRPC is used.  

Architecture is less precisely assayed in the accuracy experiments. However, the combination of 

response time and accuracy together permit, under assumptions of parsimony, a unified account 

of both data sets.   

Theoretical and empirical aspects are necessarily intertwined in this research, but 

segregation according to the major contributive features will aid the presentation. The current 

work offers a number of experimental contributions.  Predominantly, the overall goals of this 

investigation predicated a combination of response time and accuracy experimental paradigms for 

purposes of seeking a unified interpretation, comparison and linkage of RT and accuracy models 

in a context in which parallel processing seemed likely. The combining of RT plus accuracy tests 

attains new prominence in light of the theoretical discovery of the architectural muteness of the 

accuracy analyses and the inability of the RT data to directly unveil channel or state 

dependencies. Furthermore, to allow a direct comparison between performance on RT and 

accuracy tasks, it was important to use the same participants in all the conditions, which of 

course, has not been done before.  Finally, it was also desirable to employ a very simple and 

reasonably well understood basic paradigm and stimuli to facilitate comparisons across the 

accuracy and RT designs. Thus, we used a simple dot detection task close to that of Townsend 

and Nozawa (1995). This type of strategy is useful in validating novel methodologies (e.g., Fific, 
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Nosofsky & Townsend, 2008). Yet, we also learned new facets of performance since, as noted 

below, the latter paradigm had heretofore only been employed in OR, response time experiments. 

Townsend & Nozawa (1995) studied response times in a redundant-target task with two 

dots, but used only the OR design, finding overwhelming evidence for parallel, minimum-time 

processing with capacity varying from super to quite limited. The present RT study contained 

also an AND condition which requires exhaustive (conjunctive) processing. We assess 

architecture and probe capacity with an alternate measure of capacity, appropriate for AND 

experiments. On that note, Shaw (1982) and Mulligan and Shaw (1980) had also focused only on 

OR decisions. Thus, our new AND accuracy experiment effectively extends both the theoretical 

and the empirical domain of the original papers. 

 The final experimental contribution of this paper involves adjustment to the procedure 

used by Mulligan and Shaw (1980), to potentially allow for integration of information. The data 

and analyses of Mulligan and Shaw supported independent decision models, not integration as 

they defined it in their terminology. Their stimuli, however, were presented peripherally (40 

degrees off center). Miller (1982), Berryhill, Kverga, Webb, & Hughes (2007), and others, with 

response times and central presentations, have found evidence against race (separate channels) 

models and in favor of coactive models. It is possible that information is integrated differently on 

and off the center of the perceptual field. Therefore, in Mulligan and Shaw’s words: 

“…replication with stimuli at 0 deg azimuth…would be a worthwhile endeavor.” (p. 476). Of 

course, no two dots can occupy the same place in space at 0 deg azimuth, but our stimuli were 

fairly close to it (±1 deg above and below a central fixation point). 

On the theoretical side, we provide a unified approach and taxonomy for the Shaw models 

within our theory and models. In particular, we introduce in the Discussion a novel fundamental 

distinction that is germane to dynamic process models in general: (1) Time-based Processes 



Evaluating Perceptual Integration 10 

dynamically collect information over some segment of time and then compare that information 

with a criterion. (2) Completion-based Processes continue to run until a criterion is reached. 

Although the original models by Mulligan and Shaw (1980) were not given explicit 

stochastic, temporally defined interpretations, we show that they can be naturally interpreted as 

Time-Based Processes. Yet, we further prove in the Discussion that in accuracy-alone 

experiments such as Shaw and colleagues carried out (and we also in Study II), three of those 

four models can be perfectly mimicked by Completion-Based Processes.   

Another theoretical contribution of the current paper is the extention of Shaw’s family of 

model predictions to AND paradigms. Furthermore we prove that architecture and the appropriate 

temporal dynamics play virtually no role in the NRPC accuracy predictions. That is, different 

processing architectures (serial, parallel) predict the same NRPC pattern. However, if a logical 

stopping rule is attached to, say an OR vs. an AND paradigm, then both Shaw’s models and our 

models make differential predictions in the two paradigms, independent of architecture.  That is, 

the stopping rule is critical but not the architecture.  Our coactivation model and the Mulligan and 

Shaw (1982) weighted integration model are excluded here because as noted earlier, the concept 

of stopping rule is inapplicable so they make identical predictions for OR and AND designs. 

 In the upcoming section we shall briefly recount two tests for assessing the stopping rule 

and architecture that are based on response time distributions: mean interaction contrast, and 

survivor interaction contrast. We will further outline a third measure, the workload capacity 

coefficient, which assesses the processing capacity of the system and at the same time indirectly 

informs us about architecture. We will then survey the methodology of Shaw and colleagues 

(Mulligan & Shaw, 1980; Shaw, 1982), in which response accuracy is the independent variable. 

Then we present data from two studies, each involving two experiments, in which the same 
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participants performed with high-accuracy (response time task) and para-threshold stimuli 

(accuracy task). We now turn to a brief presentation of our theory-driven methodology. 

 

Analysis of Response Time Data: System Factorial Technology 

Systems factorial technology is a theory-driven experimental methodology that allows for 

a taxonomy of four critical characteristics of the cognitive system under study: architecture (serial 

vs. parallel), stopping rule (exhaustive vs. minimum-time), workload capacity (limited, unlimited, 

or super) and channel independence. The first three are directly tested by our response time 

methodology. Independence can only be indirectly assessed, as opposed to accuracy, through 

measures such as capacity (e.g., Townsend & Wenger, 2004b). Architecture and stopping rule are 

the primary characteristics targeted in this study, but we shall see that capacity and possibly 

channel dependencies may be implicated in the interpretations. 

Systems factorial technology analysis is based on a factorial manipulation of two factors 

with two levels, and it utilizes two main statistics: the mean interaction contrast (MIC; Ashby & 

Townsend, 1980; Schweickert, 1978; Schweickert & Townsend, 1989; Sternberg, 1969) and the 

survivor interaction contrast (SIC; Townsend & Nozawa, 1995). The latter extension makes use 

of data at the distributional level rather than means and therefore permits analysis at a more 

powerful and detailed level (Townsend, 1990; Townsend & Nozawa, 1988, 1995).  Both statistics 

are independent of the underlying stochastic distribution.2  

Mean Interaction Contrast  

                                        
2 The only real assumption necessary to propel this methodology and to calculate MIC and SIC is that of selective 
influence. The concept of selective influence was treated as being equivalent to statistical main effects at the level of 
means for many years, in the sense that, for instance, a higher level of salience of a stimulus will lead to a 
significantly faster mean RT. It is now acknowledged that selective influence must act at the level of ordering the RT 
distributions, not just means (Townsend & Ashby, 1983; Townsend & Schweickert, 1989; Townsend, 1990). 
Townsend, Dzhafarov, and their colleagues (Dzhafarov, 2003; Kujala & Dzhafarov, 2008) continue to investigate the 
underlying theory and underpinning conditions for selective influence. 
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The MIC statistic describes the interaction between mean response times (RT) of two 

factors with two levels each and can be presented as follows: 

MIC = (RTLL – RTLH) - (RTHL – RTHH ) = RTLL – RTLH – RTHL + RTHH. 

There are two subscript letters; the first denotes the level of the first factor (H=high, 

L=low) and the second indicates the level of the second factor. For the sake of concreteness, 

consider for example the visual target-detection task that we use in Experiment 1. The two factors 

in this task may be the salience (contrast, intensity) levels of two bright dots displayed against 

dark background. The first factor may then be the salience of a target presented on the top 

position and the second factor may be a target presented at the bottom. Thus, the first and second 

subscript letters refer to the intensity level (H, L) of the top and bottom targets, respectively. Note 

that MIC gives the difference between differences of mean response times, which is literally the 

definition of interaction. MIC=0 indicates that the effect of one factor on processing latency is 

exactly the same, whether the level of the other factor is L or H. Conversely, if two factors 

interact, then manipulating the salience of one factor would yield different effects depending on 

the level of the other factor, hence MIC≠0. Under-additive interaction, or MIC<0, is a typical 

prediction of parallel exhaustive processing, while over-additivity, or MIC>0, is associated with 

parallel minimum-time processing or coactive models. Serial models, with either an exhaustive or 

a minimum-time stopping rule, predict additivity, or MIC=0 (Townsend & Ashby, 1983; 

Townsend & Nozawa, 1995). 

Survivor Interaction Contrast 

The survivor interaction contrast function (SIC) is defined as: 

SIC(t) = [SLL(t) – SLH(t)] - [SHL(t) – SHH(t)],  
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where S(t) denotes the response time survivor function. In brief, to calculate the SIC we divide 

the time scale into bins (say, of 10 ms each) and calculate the proportion of responses given 

within each time bin to produce an approximation to the density function, f(t), and the cumulative 

probability function, F(t). That is, F(t) is equal to the probability that response time is less than or 

equal to t. The survivor function, S(t), is the complement of the cumulative probability function 

[1- F(t)] = S(t) and tells us the probability that the process under study finishes later than time t. 

To produce the SIC, one calculates the difference between differences of the survivor functions 

of the four corresponding factorial conditions the way it is derived for the means, but does so for 

every bin of time.  

Note that this statistic produces an entire function across the values of observed response 

times. Furthermore, there is a specific signature of each architecture and stopping rule, with 

respect to the shape of the SIC function (Townsend & Nozawa, 1988, 1995). For example, the 

SIC function for a parallel minimum-time model is positive for all time t, whereas the SIC 

function of a coactive model starts negative and then crosses the abscissa and becomes positive. 

If we integrate the SIC function from zero to infinity it is known to give the MIC (Townsend & 

Nozawa, 1995), and in both models the MIC actually turns out to be positive. So, it is the finer 

grained SIC that allows for a decisive test between a coactive and a parallel minimum-time mode 

of processing. Although the MIC is not nearly as diagnostic as the SIC, it reinforces the SIC 

results and provides a means of statistically assessing any interactions associated with the SIC 

function. The MIC and SIC predictions of parallel, serial, and coactive models are summarized 

on the right hand side of Table 1. 

Workload Capacity 

By “workload capacity”, we refer to the processing efficiency of the system as we 

increase the load of information by, say, increasing the number of the to-be-processed targets.  
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We first need the definition of the hazard function and the integrated hazard function: The hazard 

function, h(t) = f(t)/S(t), and captures the likelihood that a specific process (e.g., channel) will 

finish processing in the next instant, given that it is not yet done   The larger the hazard function 

at any point in time, the higher the speed of processing .  A special intuitive case often of use is 

h(t) = v > 0, a constant, implying a system that neither increases nor decreases its speed across 

time. More detail and potential applications of the hazard function to response times can be found 

in Townsend and Ashby (1983) and in Luce (1986; for a recent application to memory, see 

Chechile, 2006). The integrated hazard function, H(t), is the integral of the hazard function from 

zero to t. 

Townsend and Nozawa (1995) proposed a measure of performance under increases in the 

workload, that is, the number of items (features, etc.) that are presented to the participant for 

processing.  The associated statistic is the capacity coefficient, which is computed as the ratio of 

the integrated hazard function from the double target condition (i.e., two targets presented 

simultaneously viewed here as ‘AB’) and the sum of the integrated hazard functions of the single 

target conditions A, B respectively: Thus, COR(t) = HAB(t)/[HA(t)+HB(t)].  The subscripts OR 

indicate that this index is calculated for the OR task. 

COR(t) is a measure benchmarked against a standard type of parallel process, namely one 

that has stochastically independent channels and whose channel speeds, defined by the 

probability distribution on processing time associated with each channel, do not vary with the 

number of other channels that are operating. The latter notion defines unlimited capacity in 

parallel models and by definition, unlimited capacity in general. Any such models produce COR(t) 

= 1 for all times t ≥ 0. The prediction of a standard serial model, where processing of one target 

item has to be completed before commencing the processing of the other target item and the two 

processes are independent, is, under certain conditions COR(t)=.5. However, in principle non-



Evaluating Perceptual Integration 15 

parallel models might mimic COR(t) = 1 and thereby be effectively unlimited capacity. Although 

in practice the latter scenario seems unlikely the fact that distinct architectures might produce the 

same capacity values emphasizes the importance of employing tests such as MIC and SIC that 

independently assess architecture.  

 Recapping, COR(t) values of 1 imply that the system has an unlimited capacity. COR(t) 

values that are below 1 define limited capacity, such that increasing the processing load (by 

increasing the number of targets on the display) takes toll on the performance of one or both 

channels. Finally, if COR(t) > 1 then the system is said to have super-capacity; processing 

efficiency of individual channels actually increases as we increase the workload.  Although 

capacity and independence are logically distinct, the capacity coefficient can be affected by 

dependencies. Thus, the prediction of a parallel model with positive cross-channel interactions is 

COR(t) > 1, as is the qualitative prediction of a coactive model. Very strong inhibitory cross-

channel interactions, may lead to severely limited capacity, such that COR(t) < .5. 

Townsend and Wenger (2004b) developed a comparable capacity index for the AND task: 

CAND(t) = [KA(t)+KB(t)]/ KAB(t). Here, K(t) is the integral of a new kind of ‘hazard’ function, one 

that calculates the likelihood of just finishing in the last instant, rather than the instant ahead, and 

conditioned on the event that the process has been completed until just around time t:  

k(t)=f(t)/F(t), and K(t) = ∫ K(t’) dt’, integrated from zero to t.  In CAND(t), the numerator and 

denominator are arranged such that the interpretation is identical to that of the OR capacity index: 

CAND(t) values that are above, at, or below 1 imply super-, unlimited-, or limited-capacity, 

respectively. 

 

Analysis of Response Accuracy Data: The “NO” Response Probability Contrast 

(NRPC) and Mulligan & Shaw’s Information-Sampling Models  
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No Response Probability Contrast 

We next consider the application of a factorial method to a psychophysical experiment in 

which response accuracy is the dependent variable. As noted earlier, the present development 

represents an extension of the work of Shaw and colleagues (e.g., Shaw, 1982; Mulligan & Shaw, 

1980) within the confines of our systems factorial oriented approach. Mulligan and Shaw (1980) 

analyzed the probabilities of “NO” responses in each of four stimulus conditions using the 

following formula, which we call the “NO” response probability contrast (NRPC) as related 

earlier. Let Ø represent a blank or null stimulus, A the presence of a target at the top of the 

display, and B the presence of a target at the bottom of the display. Then we define the “NO” 

response probability contrast as the double difference, 

NRPC = P[NO|(Ø,Ø)] – P[NO|(A,Ø)] – (P[NO|(Ø,B)] – P[NO|(A,B)]). 

The first term, P[NO|(Ø,Ø)], represents the probability of a “NO” response given no 

signal. The term P[NO|(A,B)] represent the probability of a “NO” response given signals on both 

the top and bottom positions (i.e., a double target display), and so on. 

Mulligan and Shaw (1980) derived predictions for the probabilities of “NO” responses (as 

well as for their logarithmic and z score transformations) for four types of models. The 

predictions of these models are summarized on the left hand side of Table 1. The description of 

these models follows shortly, but for the readers’ convenience we also summarize the formulas in 

Table 2. 

We shall employ Mulligan and Shaw’s terminology to facilitate connections with their 

earlier papers, and subsequently place the models within our approach. It should be noted that on 

occasion the language in their papers may seem to suggest a wider interpretation of the models 

than what was mathematically defined in their equations. We must confine our analyses to the 

published mathematical interpretations. 
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All four models assume that, much like the static theory of signal detectability (e.g., 

Green & Swets, 1966), information is compared with one or more criteria.  The first three models 

postulate that a stochastically independent comparison is made on each channel of the sampled 

information vs. a criterion. These three models are said to differ from one another in the way 

attention is allocated to multiple processing channels (say, to visual and auditory modalities, or in 

our case display positions).  In the fourth model, information from the two channels is averaged 

prior to comparison, and this single integrated value is then compared to a single criterion. Next, 

we examine more closely each of the models and its NRPC predictions.  

Independent-decision sharing model. In this model (also dubbed the fixed-sharing model 

in Shaw’s 1982 paper) the participant is viewed as sharing attention between channels on each 

trial, and the proportion of attention assigned to each channel is assumed to remain constant 

across trials. The formula for the probability of a NO response is 

)()()"(" BBAA XPXPNOP ββ <⋅<= , where XA and XB are the random variables that represent 

the number of counts on two processing channels, A and B, and βA and βB are the respective 

decision criteria. 

Mulligan and Shaw (1980) showed that this model predicts an over additive NRPC (i.e., 

NRPC > 0) and additivity after logarithmic transformation, such that log(P[NO|(Ø,Ø)] – 

log(P[NO|(A,Ø)]) – log(P[NO|(Ø,B)]) + log(P[NO|(A,B)]) = 0 (see also Table 1 -- ‘Sharing’ 

model). Our independent, unlimited capacity parallel (race) models, when adapted to accuracy 

designs, can make this type of prediction. (e.g., Townsend & Ashby, 1983, Chapter 9). Now, 

within our approach ‘sharing’ usually implies limited capacity since it seems to suggest a fixed or 

bounded source of capacity in which HAB(t) would be less than HA(t) + HB(t) (see section 

Workload Capacity above). However, since we confine our discussion to the mathematical 
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expression of the model, as presented by Mulligan and Shaw, it should be viewed for all intents 

and purposes as having unlimited capacity. 

Independent-decision all-or-none probability mixture model. This model is a probability 

average of the probability that in each of the two channels information fails to reach its criterion. 

The formula relating individual channels to the overall likelihood of a NO response is 

)()1()()"(" BBAA XPXPNOP βαβα <⋅−+<⋅= . Information on each trial is obtained from only 

one channel: only from channel A, with probability α , or only from channel B with probability 

(1-α ). The overall performance is then a weighted mixture of performance on individual trials. 

This model can be viewed as an attention-switching model where on any single trial attention is 

fully allocated to one channel and not the other, but can switch between channels on subsequent 

trials. Of course, the unattended source of information, or channel, has no influence on response 

probabilities. 

The prediction of this version of the mixture model, also termed the all-or-none mixture 

model (Shaw, 1982) is NRPC = 0 (Table 1 -- ‘Mixture: all or none’).  Within our taxonomy, this 

type of model would be classified as a serial model which, with some probability selects one of 

the channels to process and stops immediately after completion. This type of behavior is most 

appropriate when responding “YES” on redundant target trials -- this is called first-terminating 

(or minimum time) processing.  Of course, a “NO” response requires rejection on both trials and 

hence demands exhaustive processing to have a chance for optimal performance.  We would 

expect accuracy with this kind of model to be sub-optimal.3  

                                        
3 Consider the OR task, where detection of at least one target signal is sufficient to elicit a “YES” response. If, on 
any given trial, attention in an all-or-none mixture model is fully allocated to one channel but not to the other, then at 
any time t there is just one process going on, much like in a serial model. On double target trials the system halts 
after processing the attended signal, no matter whether attention is allocated to one channel or the other (both have 
target signals). This case is identical to serial processing with a first-terminating stopping rule. Notice that both 
models predict very high error rate on single-target displays (50% if the probability of processing one channel but 
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Independent decision not all-or-none mixture mode. In this version of a mixture model, 

attention is directed primarily to one source, but some information from the unattended source is 

used in the detection decision. Attention affects the criterion value, such that β is the criterion for 

the attended channel and β’ is the criterion for the less (but still) attended channel. Its formula is 

)()'()1()'()()"(" BBAABBAA XPXPXPXPNOP ββαββα <⋅<⋅−+<⋅<⋅= . The prediction 

of this version is NRPC > 0 (Table 2 -- ‘Mixture: not all or none’). This type of model would be 

called a compound processing model in our approach (see Townsend & Ashby, 1983, Chapter 5) 

since this kind of prediction would follow from a probability mixture of parallel systems.  

Weighted integration model. In this model, averaged evidence from separate processing 

channels is summed prior to decision and then compared to a single criterion, β. Its formula is 

)])1(([)"(" β<⋅−+⋅= BA XwXwPNOP .  Note that this formula is compatible with a system 

with attentional weight “w” placed on channel A and “1-w” on channel B. This model is a 

relative of the coactive model discussed earlier except that the convention for coactive models 

has become a simple addition of the information or activation from the separate channels (e.g., 

Colonius & Townsend, 1997).  In addition, in the particular instantiation studied by Mulligan and 

Shaw (1980) the probability distributions of the internal random variables (evidence or activation 

in a channel) are assumed to be Gaussian. With an additional and rather strong assumption of 

equal variances of the signal and the no-signal distributions, the weighted integration model 

predicts additivity of the z, or inverse-normal transformations of the probabilities of a “NO” 

response: z(P[NO|(Ø,Ø)]) – z(P[NO|(T,Ø)]) – z(P[NO|(Ø,B)]) + z(P[NO|(T,B)]) = 0 (Shaw, 

1982, pp. 373-376).  

                                                                                                                                
not the other or vice versa are equal): a serial first-terminating model that processes the target-absent channel first 
will stop before processing the second, target present display, leading to an erroneous “NO” response. Similarly, an 
all-or-none mixture model that allocates attention only to the target-absent channel will overlook the target presented 
to the other channel, again leading to an erroneous “NO” response. 
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Table 1. Different processing models and their accuracy and response time predictions. 

Mulligan and Shaw (1980) and our time-based 

accuracy models’ predictions 

Response time models’ (e.g., Townsend & 

Nozawa, 1995) predictions 

Model type Predictions Model type Predictions 

Sharing  

 

OR 

AND 

 

 

NRPC>0; log NRPC=0 

NRPC<0; log YRPC=0 

Parallel- 

independent  

OR 

AND 

 

 

MIC>0; SIC(t)>0 

MIC<0; SIC(t)<0 

Mixture: all or none 

OR 

AND 

 

NRPC=0 

? 

Serial 

OR 

AND 

 

MIC=0; SIC(t)=0 

MIC=0; SIC(t)<0 for 

small t, >0 for large t. 

Mixture: not all or 

none 

OR 

AND 

 

 

NRPC>0 

? 

  

Weighted integration z NRPC=0 Coactivation MIC>0; SIC(t)<0 for 

small t, >0 for large t. 

NRPC = P[NO|(Ø,Ø)] – P[NO|(T,Ø)] – P[NO|(Ø,B)] + P[NO|(T,B)] 
log NRPC = log(P[NO|(Ø,Ø)]) – log(P[NO|(T,Ø)]) – log(P[NO|(Ø,B)]) + log(P[NO|(T,B)]) 
log YRPC = log(P[YES|(Ø,Ø)]) – log(P[YES|(T,Ø)]) – log(P[YES|(Ø,B)]) + log(P[YES|(T,B)]) 
zNRPC = zscore(P[NO|(Ø,Ø)])–zscore(P[NO|(T,Ø)])–zscore(P[NO|(Ø,B)])+zscore(P[NO|(T,B)]) 
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Table 2. Formal description of four types of processing models that were studied by Mulligan 
and Shaw (1980). The equation for each model gives P(“NO”), the probability of responding “no 
signal.” For all models, XA and XB are the random variables that represent the number of counts 
on two processing channels, A and B, and βA and βB are the respective decision criteria. The last 
model has only one criterion, β. See text for clarification concerning other notation. 

 

Model 

 

 

Equation 

Independent-decision sharing 

model 

)()()"(" BBAA XPXPNOP ββ <⋅<=  

Independent-decision mixture 

 all-or-none model 

)()1()()"(" BBAA XPXPNOP βαβα <⋅−+<⋅=  

Independent-decision mixture  

not all-or-none model )()'()1(
)'()()"("

BBAA

BBAA

XPXP
XPXPNOP
ββα

ββα
<⋅<⋅−+

<⋅<⋅=
 

Weighted integration model )])1(([)"(" β<⋅−+⋅= BA XwXwPNOP  

 

To recap, the independent sharing model and the not-all-or-none mixture model both 

predict NRPC > 0. The former also predicts the double difference of the log transforms of the 

probabilities of the NO responses will equal 0. The model with an all-or-none mixture predicts 

NRPC = 0. Finally, the weighted integration model, a relative of the coactive model, predicts z 

NRPC = 0. These predictions are summarized, as we mentioned, on the left hand side of Table 1.    

We next present the two experiments of Study I, which employed RTs to directly assess 

architecture, stopping rule, and workload capacity. We then proceed to study II (Experiments 3 

and 4), where the same individuals performed in accuracy tasks. 

 

Study I: The OR and AND Response Time Experiments 
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Method 

Participants. Ten Indiana University students (two graduates and eight undergraduates; 7 

females, 3 males) were paid to participate in the study. They had normal or corrected to normal 

vision. Their ages ranged between 22 and 30 years. The participants performed in 8 experimental 

sessions of approximately an hour each. 

Stimuli. There were 9 possible stimulus displays: 4 types of double target displays, 4 types 

of single target displays, and 1 no-target display. On a double target display two dots, with a 

diameter of .2° each, were located on a vertical meridian, equally spaced above and below a 

fixation point at an elevation of ±1°. We refer to these targets as the top (A) and bottom (B) 

signals respectively. There were two levels of target luminance (67 cd/m2 and .067 cd/m2), 

chosen after pilot testing to ensure a robust effect on the response times (to allow for testing the 

interaction contrasts). Each target could appear in high (H) or low (L) luminance, thus 

comprising a total of four possible combinations (HH, HL, LH, and LL). On a single target 

display, a target appeared at the top or at the bottom position, but not on both. The single dot 

could appear in high or low luminance. The target-absent display consisted of a blank black 

screen.  

The stimuli were generated via Microsoft Painter by an IBM compatible (Pentium 4) 

microcomputer and displayed binocularly on a super-VGA 15’’ color monitor with a 1024x768 

resolution using DMDX software (Forster & Forster, 2003). On a trial, a single-pixel fixation 

point (subtending to .05° of visual angle at a viewing distance of 50 cm; luminance of .067 

cd/m2) was presented on the center of the screen for 500 ms, followed by a blank black screen 

(500 ms), and then followed by the stimulus display. The stimulus appeared on the screen for 100 

ms or until a response was given and was then replaced by a blank screen. Participants were 

instructed to respond as quickly as possible. The response sampling began with the onset of the 
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stimulus display and continued for 4000 ms. The inter-trial-interval was 1000 ms. Participants 

were asked to respond affirmatively by pressing the right mouse key with their right index finger, 

and respond “NO” by pressing the left mouse key with their left index finger. 

The probabilities of presenting both targets, presenting the top target alone, the bottom 

target alone, or no target at all were equal to .25.4 The probabilities associated with each target 

luminance were .5.  

Procedure. The participants were tested individually in a completely dark room, after 10 

minutes of darkness adaptation. Each participant performed in both the OR and the AND 

experiments. In the OR experiment, participants were asked to respond affirmatively if they 

detected the presence of at least one target (i.e., two targets, single target on top, single target at 

the bottom), and respond “NO” otherwise. In the AND experiment, participants were asked to 

respond affirmatively if and only if they detected the presence of two targets, and respond “NO” 

otherwise. The order of experiments was counter balanced between participants. Each experiment 

consisted of four sessions, each about an hour long. Sessions were held on consecutive days. 

Each session started with a practice block of 100 trials, followed by 5 experimental blocks of 160 

trials each (with a 2 minute breaks in between blocks). The order of trials was randomized within 

a block. Overall, a large number of trials, 3200, were collected for each participant at each 

experiment (OR, AND), for tests at the distributional level. 

Results and Discussion 

One participant failed to reach the accuracy criterion (90%) and her data was therefore 

excluded from the analysis. Accuracy for the nine remaining participants was high in both the 

                                        
4 This means that the overall probability of a “YES” response in the OR task is .75, or .25 in the AND task, and a 
response bias may ensue. However, systems factorial technology is insensitive to such biases. First, it does not 
attempt to fit criterion parameters. More importantly, the different statistics [MIC, SIC(t), C(t)] are all based on trials 
from the same response (“YES”), so response bias makes no difference. The only exception might have been the 
CAND(t), but as we explain later in the text it is computed with single target data from the OR case (“YES” data). 
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OR and the AND experiments. The overall error rate, across tasks and participants, was 3.6%, 

and no response time-error tradeoff was observed. Analyses of the response time data were 

restricted to correct responses in both experiments. Responses above 900 ms or below 160 ms 

were omitted from the analysis (based on pilot testing to approximate criteria of ±2.5 std. away 

from the mean). Because the primary interest in Experiment 1 and 2 was patterns of response 

time, we do not refer to accuracy in this section. Finally, because different individuals may 

employ different processing architectures (e.g., serial, parallel), or have different capacity 

limitations, we analyze and report separately results of individual participants. Group results 

(means) are presented at the bottom of Tables 3 through 6 to provide an overview, but were not 

subjected to separate inferential analysis. 

Experiment 1 (OR): Mean reaction times for individual participants are presented in 

Table 3. For data pooled across participants (as well as for each of the individual participants), 

mean response times were fastest on the double target trials (314 ms), then next fastest on single 

target trials (342 and 353 ms for the single target top and bottom, respectively), and slowest on 

the target-absent trials (491 ms). This order was found to hold also at the survivor functions 

level, which implies a stronger level of stochastic dominance (c.f. Townsend, 1990). These 

results are compatible with those of Townsend & Nozawa (1995).  

We performed a 2x2 analysis of variance on the response time data of individual 

participants with the presence vs. absence of the top target as one factor, and the presence vs. 

absence of the bottom target as a second factor. The ANOVA revealed significant main effects at 

p<.01 for both factors and for all participants. That is, participants were faster to respond when a 

target was presented on the top position (328 ms when averaged across all participants) 

compared to trials with no target on top (422 ms). Similarly, they were faster to respond when a 

target was presented at the bottom position (333.5 ms across all participants) compared to trials 
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with only a blank at the bottom (416.5 ms). For eight participants (all except BJ) there were also 

significant interactions of target-top x target-bottom, at p<.001, likely driven by the very slow 

responses on the no-target trials.  

Comparing performance on double target vs. single target trials results in the capacity 

index, COR(t). COR(t) plots for individual participants are presented in Figure 2. Most COR(t) 

coefficient values of each participant lie above .5 and below 1, suggesting moderately limited 

capacity throughout the processing interval. Note that values of COR(t) above .5, given 

approximately equal performance on the two signals, also indicate a so-called race benefit, 

meaning performance is better than either target alone. The same pattern was observed for all 

individual observers. These results were qualitatively the same as the Townsend and Nozawa 

experimental condition where the double target stimuli presented the two dots dichoptically in 

corresponding retinal locations in the two eyes. It is also worth noting that reasonable basetime 

components of RT (all the contributions to response times not involving the processes under 

inspection) will not lead to substantial distortion of capacity statistics.  However, minor 

decreases in COR(t) could be related to that variable (Townsend & Honey, 2007).. 

To better inform the reader about the (in)stability of the estimate of the capacity function, 

we plot in thin dashed lines the standard error of estimation (estimated by bootstrapping; see 

Silverman, 1986, and Van Zandt, 2002). To overcome undesired effects of outliers we estimated 

COR(t) for the time range containing 99% of the observations (separately for each individual). 

The estimations for this range were highly reliable, as evident by the exceptionally tight error 

bounds. 
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Table 3. Mean response times (in ms.) in Experiment 1 (OR task). 

Participant Double 

target 

Single 

target 

top 

Single 

target 

bottom 

No 

target 

Subset of double targets: 

 

HH    HL    LH     LL   MIC       F 

BJ 300 305 328 339 288 293 296 322 21 6.2* 

RS 297 334 334 518 270 282 282 356 62 54.8*** 

JS 396 421 439 530 365 384 401 435 15 1.2 

MB 286 311 321 484 266 270 277 331 51 28.6*** 

RM 356 371 394 507 336 344 352 394 34 9.0** 

LB 425 479 494 652 371 404 411 515 71 33.8*** 

JG 240 263 275 433 215 222 226 295 63 147.0*** 

WY 296 344 333 492 259 280 274 370 75 62.8*** 

AW 230 247 262 462 216 217 211 274 62 112.0*** 

           

Means 314 342 353 491 287 300 303 366 50  

 
* p<.05; ** p<.01; *** p<.001 
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Figure 2. Capacity coefficient values for individual observers in Experiment 1 (OR task). The 
thin dashed lines represent ±1 standard error of the estimate of the capacity coefficient function 
(estimated by bootstrapping). 

 

Focusing on the subset of double target trials, HH trials were processed faster, on average 

(287 ms), than HL (300 ms) and LH (303 ms) trials. LL trials were the slowest (366 ms). 

Statistically significant main effects are necessary to draw architectural inferences from the 

interactions. A 2x2 ANOVA for top-target salience (high, low) by bottom-target salience (high, 

low) revealed significant main effects at p<.001 for both factors and for all participants: 
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Responses were faster when the top target was highly salient (293.5 ms when averaged across all 

participants) compared to trials where the top target had low salience (334.5 ms). Similarly, 

responses were faster when the bottom target was highly salient (295 ms across all participants) 

compared to trials where the salience of the bottom target was low (333 ms). This information 

also supports the validity of selective influence of the salience factor.  

The most pertinent test for the purpose of models’ diagnosis is the interaction of salience 

manipulations of the top and bottom targets, which is, in fact comprised of the mean interaction 

contrast (MIC) and the survivor interaction contrast (SIC) analyses. The analysis revealed 

significant interactions for all participants but one (JS), ruling out serial models as a viable 

explanation for the processing of the top and bottom targets. MIC values and the corresponding 

F values are presented on the two right-most columns of Table 3. MIC values were positive for 

all participants, supporting parallel processing with a minimum-time stopping rule. Applying the 

interaction contrast at the distributions’ level resulted in SIC functions that were positive for all 

participants, for all time t (except for JS, for some t), further bolstering a parallel minimum-time 

mode of processing (Figure 3). 
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Figure 3. Survivor interaction contrast functions for individual observers in Experiment 1 (OR 
task). The thin dashed lines represent ±1 standard error of the estimate (estimated by 
bootstrapping). Scaling of the y-axis may slightly vary across individual plots. 
 

Experiment 2 (AND): Mean reaction times for individual participants are presented in 

Table 4. For data pooled across participants, mean response time on the double target condition 

was the slowest (454 ms). This was also true at the individual level for six out of the nine 

participants. The exact order of the remaining factorial conditions (single-target and no-target) 

varied across participants.  
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We performed the same analysis of variance which we have used for the OR data on the 

response time data from the AND experiment, with the factors top-target (present, absent) by 

bottom-target (present, absent). The ANOVA revealed significant main effects at p<.01 for both 

factors for seven out of nine participants. These effects, interestingly, were opposite to those 

observed in the OR experiment: participants were slower to respond when a target was presented 

on the top position (439 ms, averaged across all participants) compared to trials with no target on 

top (411.5 ms). Concomitantly, they were slower to respond when a target was presented at the 

bottom position (431.5 ms across all participants) compared to trials with only blank at the 

bottom (419 ms). One participant (RS) exhibited a significant main effect for the presence vs. 

absence of the top target [F(1, 1) = 13.85, p<.001] but not for the bottom target [F(1, 1)=.35, 

p=.55]. Another participant (MB) exhibited the opposite pattern [F(1, 1)=.23, p=.63, and F(1, 

1)=9.41, p<.01 for the top and bottom targets, respectively]. Eight participants (all except LB) 

exhibited significant interactions of top-target presence x bottom-target presence, at p<.05.  

A word is in order concerning strategies of computing workload capacity in AND 

designs. Calculations of CAND(t) are complicated by the fact that unlike the OR design, single 

target trials in the AND case require a “NO” response rather than a “YES” response. This fact 

means that, since negative decision times are well known to typically be longer than affirmative 

times, for a number of reasons (see, e.g., Clark & Chase, 1972), capacity could be artificially 

computed to be higher than it would if a homogeneous response (in these studies, “YES”) were 

employed in both the single target as well as the double target trials. Although not a perfect 

solution to the problem, our stratagem is to transfer the single target data (only) from the OR 

experiment since these require, as do the double target AND trials, a “YES” response. Of course, 

this technique assumes that the single target response time distributions will be invariant from 
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the OR to the AND blocks.  However, the risk is lowered by the fact that the same participants 

engaged in both the OR and the AND experiments. 

Capacity coefficients were therefore computed for each individual by combining the 

single target data from the OR experiment and then the double target data, from the same 

individual, from the AND experiment. Individual capacity plots are presented in Figure 4. Again 

aided by the standard error of estimation, CAND(t) was found to escape from the zone of limited 

capacity for participants BJ, JS, and LB, for some time intervals. Capacity was overwhelmingly 

limited for participants RS, MB, RM, JG, WY, and AW. Interestingly, in the case of AND 

paradigms the presence of basetime may actually lead to increased, overestimated CAND(t) , as 

opposed to the underestimation in the OR case (Townsend & Eidels, 2011). However, we note 

again that basetime is not expected to be a major factor in the estimation of C(t).  

  

Table 4. Mean response times (in ms.) in Experiment 2 (AND task). 
Participant Double 

target 

Single 

target 

top 

Single 

target 

bottom 

No 

target 

Subset of double targets: 

 

HH    HL    LH     LL     MIC         F 

BJ 353 355 317 328 326 359 371 358 -46 37.1*** 

RS 467 442 430 451 416 470 489 500 -43 10.1** 

JS 492 438 417 348 431 523 507 515 -83 46.3*** 

MB 398 379 365 408 358 413 413 417 -51 14.9*** 

RM 505 408 392 432 467 515 520 523 -44 13.6*** 

LB 556 598 604 644 481 594 574 580 -107 82.1*** 

JG 396 350 329 333 342 423 414 416 -78 54.6*** 
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WY 496 439 431 390 426 532 535 503 -138 129.3*** 

AW 423 405 399 395 355 473 449 435 -131 153.8*** 

           

Means 454 424 409 414 400 478 475 472 -80  

* p<.05; ** p<.01; *** p<.001 

 

 
Figure 4. Capacity coefficient values for individual observers in Experiment 2 (AND task). The 
thin dashed lines represent ±1 standard error of the estimate of the capacity coefficient function 
(estimated by bootstrapping). 
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Next, focusing on the subset of double target trials, a close examination of Table 4 

reveals that the order of mean response times on the HL, LH, and LL conditions varied from one 

participant to another. However, mean response times on HH trials were overwhelmingly faster 

than response times on any of the other luminance conditions, thereby contributing to a negative 

mean interaction contrast. A 2x2 ANOVA for top-target salience (high, low) by bottom-target 

salience (high, low) revealed significant main effects at p<.01 for both factors, for all 

participants. As in the OR experiment, responses were faster when the top target was highly 

salient (439 ms when averaged across all participants) compared to trials where the top target 

had low salience (473.5 ms). Similarly, responses were faster when the bottom target was highly 

salient (437.5 ms across all participants) compared to trials where the salience of the bottom 

target was low (475 ms). Selective influence is again supported. 

Recall that the critical test for assessing models’ architecture is the interaction of salience 

manipulations of the top and bottom targets, the mean interaction contrast. MIC values were 

negative for all participants (at least at p<.01; see two right-most columns of Table 4), 

supporting parallel processing with an exhaustive stopping rule. Applying the interaction 

contrast at the distributions’ level, that is, using the SIC functions resulted in a function that was 

negative for all time t, further supporting a parallel exhaustive mode of processing (Figure 5). 
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Figure 5. Survivor interaction contrast functions for individual observers in Experiment 2 (AND 
task). The thin dashed lines represent ±1 standard error of the estimate (estimated by 
bootstrapping). Scaling of the y-axis may slightly vary across individual plots. 
  

The results of Study I provide valuable information about the architecture and stopping 

rule of the system when processing simple visual stimuli. The OR experiment, based on a 

variation of that of Townsend and Nozawa (1995), again finds parallel processing with a 

minimum-time stopping rule and moderately limited capacity. The new AND experiment also 

200 400 600 800

-0.5

0

0.5

RT (ms)

S
IC

(t)

AW

200 400 600 800

-0.5

0

0.5

RT (ms)

S
IC

(t)

WY

200 400 600 800

-0.5

0

0.5

RT (ms)

S
IC

(t)

JG

200 400 600 800

-0.5

0

0.5

RT (ms)

S
IC

(t)

LB

200 400 600 800
-0.5

0

0.5

RT (ms)

S
IC

(t)

RM

200 400 600 800
-0.5

0

0.5

RT (ms)

S
IC

(t)

MB

200 400 600 800
-0.5

0

0.5

RT (ms)

S
IC

(t)

JS

200 400 600 800
-0.5

0

0.5

RT (ms)

S
IC

(t)

RS

200 400 600 800
-0.5

0

0.5

RT (ms)

S
IC

(t)

BJ



Evaluating Perceptual Integration 35 

authenticates parallel processing, but now conforming to an exhaustive stopping rule (both 

positions must be completed when two targets are present).   

Of the Shaw set of models, which seem most like they might be extendable to our RT 

findings?  First, suppose that probability correct approaches 1.  Clearly, what Mulligan and Shaw 

(1980) call the Independent-Decision Sharing model could then be pictured directly as the 

marginal probability of being below both channels’ decision thresholds or, through the indicated 

mimicking, as the marginal likelihood of the NO decision process winning a race with the YES 

process, in both the top as well as the bottom channel.  The only minor discrepancy relates to the 

assumption of context invariance, which implies unlimited capacity [Ci(t) = 1, i = OR or AND] 

(see Footnote 5 in the Discussion for further explication), but overall stochastic parallelism and 

independence are well supported by the RT data.  And, in our data too, capacity usually failed to 

reach the unlimited capacity level, especially in the OR design.  Finally, it is interesting to 

observe a property of the weighted integration model.  Namely, when given a natural time-

stochastic interpretation that, though a cousin of our coactive model, this extension of the 

weighted integration model evidences severely limited capacity [COR(t)≤.5] in OR designs, even 

worse than the observed data.   

We now report Study II, which employs the same response assignments as Study I and 

almost the same stimuli (except that they are now more difficult to detect) and includes both OR 

and AND versions.  Shaw’s model predictions of the NRPC accuracy data are assessed and 

which of our RT models can handle these results are explored.  

 

Study II:  The OR and AND Accuracy Experiments 

 The same participants from Study I performed in two experimental sessions (OR, AND) 

on consecutive days. The apparatus was the same as in Experiments 1 and 2, but the targets’ 
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luminance was lower in order to make detection more difficult and eventually lead to a 

substantial proportion of errors. Although some errors are necessary in order to compute the 

“NO” response probability contrast, Mulligan and Shaw (1980) pointed out that different models 

are most readily discriminated at high accuracy levels (85-95% correct). Based on a pilot session 

we varied the luminance of targets for each observer such that each individual performed at 85-

95% accuracy. Targets’ luminance for most participants was set to .005 cd/m2. For two 

participants (LB, WY) it was set to .012 cd/m2, for one participant (JS) it was set to .002 cd/m2, 

and for another (AW) it was set to .001 cd/m2. 

There were only 4 possible stimulus displays (double target, single target on top, single 

target at the bottom, and no target; no H or L manipulations), each appearing with a probability of 

.25. As in Study I, in the OR experiment participants were asked to respond affirmatively if they 

detected the presence of at least one target, and respond “NO” otherwise. In the AND 

experiment, participants were asked to respond affirmatively if and only if they detected the 

presence of two targets, and respond “NO” otherwise. Each experiment started with a 100 trials 

practice block, followed by 8 blocks of 100 experimental trials each (with 2 minute breaks in 

between blocks). Participants were instructed to respond as accurately as they can. Due to the 

task difficulty auditory feedback was provided after each correct (high tone) and incorrect (low 

tone) response. 

Results and Discussion 

Overview: The results of Study II, for each individual observer and averaged across all 

observers, are presented in Table 5 (Experiment 3 -- OR) and Table 6 (Experiment 4 -- AND). 

For each participant we present the probability of a “NO” response in each of the four factorial 

conditions (double target, single target on top, single target at the bottom, and no target) and the 
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overall “NO” response probability contrast, NRPC. The reader may find it useful to compare the 

results with the predictions of the different models in Table 1. 

In the OR experiment, NRPC was positive for each of the individual participants, as well 

as at the means level.  In the AND experiment, NRPC was negative for each of the individual 

participants, as well as at the means level. We further broke down the analysis of each individual 

participant to 8 blocks, and computed the NRPC separately for each block. In the OR experiment, 

NRPC was positive on 69 out of 72 blocks (96%). In the AND experiment, NRPC was negative 

on 66 out of 72 blocks (92%). Appropriate tests for statistical analyses of the NRPC and its 

transformations are described in Shaw’s (1982) Appendix 1. The test for the z score 

transformation is based on the work of Gourevitz and Galanter (1967). 

 

Table 5. Probabilities of “NO” responses in Experiment 3 (OR task) for four factorial conditions 
(no target, single target on top and at the bottom, and targets on both top and bottom positions) 
and the pertinent “NO” response probability contrast (NRPC) values. NRPC value significantly 
different than zero is evidence against all-or-none mixture model (and NRPC>0 is a prediction of 
the sharing model). Log transformation of NRPC that is different than zero is evidence against 
sharing model (in fact, all independent models). z score transformation of NRPC different than 
zero is evidence against integration model. 
Participant P[NO|(T,B)] P[NO|(T,Ø)] P[NO|(Ø,B)] P[NO|(Ø,Ø)] NRPC log 

NRPC 

z 

NRPC 

BJ .01 .17 .03 .93 .75* .60 1.98** 

RS .03 .31 .07 .97 .63 .29 1.97** 

JS .01 .13 .03 .97 .81* .91* 2.56** 

MB .01 .44 .03 .91 .46 -.37 1.05** 

RM .04 .35 .04 .70 .34 -.69* .91** 

LB .04 .20 .04 .91 .71* 1.51** 2.18** 



Evaluating Perceptual Integration 38 

JG .01 .33 .04 .92 .57 -.36 1.27** 

WY .02 .07 .06 .97 .86* 1.53** 2.86** 

AW .00 .11 .04 .95 .81* -1.5** 1.53** 

        

Means .02 .23 .04 .91 .66   

* p<.05; ** p<.01 

Table 6. Probabilities of “NO” responses in Experiment 4 (AND task) for four factorial 
conditions (no target, single target on top and at the bottom, and targets on both top and bottom 
positions), and the pertinent “NO” response probability contrast (NRPC) values. NRPC value 
significantly different than zero is evidence against all-or-none mixture model (and NRPC<0 is a 
prediction of the sharing model). Log transformation of the YES response contrast (log YRPC) 
that is different than zero is evidence against sharing model. z score transformation of NRPC that 
is different than zero is evidence against integration model. 
P’s P[NO|T,B] P[NO|T,Ø] P[NO|Ø,B] P[NO|Ø,Ø] NRPC log 

YRPC 

z NRPC 

BJ .01 .98 .97 1.00 -.94* .50 -3.17** 

RS .42 .97 .98 1.00 -.53* -.03 -1.05 

JS .47 .98 .97 1.00 -.48* -.12 -.92 

MB .30 1.00 .96 1.00 -.66* 2.8** -2.28** 

RM .55 .94 .84 .95 -.27 .85** -.78** 

LB .23 .98 .79 1.00 -.54 -1.69** -.51 

JG .47 1.00 .94 1.00 -.47* 2.18** -1.63* 

WY .48 .96 .94 .98 -.44* 1.46** -1.30** 

AW .23 .97 .94 1.00 -.68* -.85** -1.08 

        

Means .35 .98 .93 .99 -.56   

* p<.05; ** p<.01 
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Experiment 3 (OR): A further examination of the OR results in Table 5 reveals that NRPC 

values were significantly positive, or close to being significant (.05 < p < .1) for all participants, 

except for MB and RM. We indicated earlier that overall accuracy of .85-.95 is optimal for using 

the NRPC, but these two individuals were slightly less accurate than that, which may have 

contributed to the lack of statistical significance. These results falsify Shaw’s all-or-none mixture 

model. At the same time, every participant’s data are in agreement with Shaw’s independent-

decision sharing model. Notice though, that some participants do not exhibit log NRPC = 0, the 

prediction of the sharing model. However, this could be due to capacity alterations when moving 

from one to two targets in the display, just as in the RT results.  Strikingly, the z score 

transformations of NRPC were significantly different from zero, for all of participants, falsifying 

the weighted-integration model. This feature will be discussed momentarily. 

Experiment 4 (AND): The NRPC values, presented in Table 6, were significantly negative 

(or close to significance with .05 < p < .1 for Participants RM and LB) for all participants, in 

accordance with the prediction of the independent-decision sharing model. We further present in 

Table 6 the test for logarithmic transformation of the “Yes” response probability contrast, log 

YRPC = log(P[YES|(Ø,Ø)] – log(P[YES |(A,Ø)]) – log(P[YES |(Ø,B)]) + log(P[YES |(A,B)]). It 

is trivial to show that for the AND case the independent sharing model predicts log YRPC = 0, 

comparable to the log NRPC=0 prediction of the same model in the OR case (see also Shaw, 

1980, p.378). Six participants exhibit log YRPC ≠ 0 but, as in the OR case, this could be due to 

capacity alterations when moving from one to two targets in the display.  

Next, the z score transformations of the NRPC were significantly different from zero (or 

close to significance) for seven out of nine participants, arguing against the weighted-integration 

model. For JS and LB, however, these test numbers were far from significance. Is it possible that 
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these participants integrated evidence from two channels (corresponding to two spatial locations), 

as suggested by the model? Or are we facing a statistical power issue? Interestingly enough, in 

the response time task of Study I, JS and LB also exhibited super capacity [C(t)>1, Figure 4] on 

the AND, but not on the OR experiment. One explanation is that the AND task encourages 

integration (at least by some individuals) by virtue of calling attention for one target and the 

other. 

In general then, both the response time (Study I) and the NRPC accuracy-based results 

(Study II) are in agreement with parallel and independent processing of the two signals (except 

for few participants in the AND task). Further, all the analyses support an appropriate (OR/AND) 

stopping rule.  

 

General Discussion 

Complementary and mutually supportive results were observed for the response time 

study and the accuracy study. First, we consider the OR and then the AND response time 

experiments (1 & 2). Then we discuss the accuracy results from Experiments 3 and 4. Next, we 

discuss a fundamental theoretical distinction between time-based and completion-based process 

models.  Finally, the criticality of using both RT as well as accuracy is accentuated by proof that 

Shaw’s time based models can equally well be expressed as serial or parallel and each is 

moreover equivalent to a completion based model. 

The RT Study 

In the OR experiment of the response time study, participants exhibited a positive (over 

additive) MIC (mean interaction contrast), from which we infer a parallel or coactive processing 

architecture.  If the separate decisions assumption (i.e., non-coactive parallel) holds, then a 

minimum-time stopping rule is called for. 
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Next, consider the SIC (survivor interaction contrast) functions: Parallel coactive 

architectures, where activations from the two channels are integrated (independently, without 

weighting or interactions in the original channels) into a final common pool, also predict a 

positive MIC. Recall that coactive models predict a small negative dip in the SIC functions 

before they go positive (Townsend & Nozawa, 1995; Houpt & Townsend, 2011), but ordinary 

parallel race models predict continuous positivity.  All our OR SIC curves were purely positive 

disconfirming coactive process models. In addition, coactive models generally predict very high 

super capacity in the COR(t) functions. Only extremely high capacity limitations, as when there is 

massive lateral inhibition (violating the independence assumption), can overcome this tendency 

(e.g., Eidels et al., 2011; Townsend & Nozawa, 1995; Townsend & Wenger, 2004b). The 

moderately limited capacity found throughout therefore combines with the SIC functions to 

render standard coactive (and therefore integrated) processing unlikely. 

Also, positively interactive first-terminating parallel models tend to produce modest early 

negative blips and super capacity, like coactive models, but unlike our data.  On the other hand, 

negatively interactive first-terminating parallel models can readily predict qualitatively the same 

SIC functions as independent parallel systems, but with reduced workload capacity (Eidels et al., 

2011).  Hence, mild mutual inhibition in a first-terminating system is eminently compatible with 

our RT results. 

The AND experiment delivers data in strong agreement with parallel processing in league 

with an exhaustive decisional stopping rule. The MIC data were negative as were the individual 

SIC functions across time. The workload capacity functions were mostly below 1 for small to 

moderate RTs, but in five of the nine cases, increased to become super capacity for larger time 

values.  We decisively rule out coactivation because:  1. Pure coactive processing causes super 

capacity for all t > 0.  2. Coactivation models predict MICs greater than zero and mostly positive 
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SIC functions with modest leading negative blips, even with an AND design, contrary to the 

results.  Of course, a hybrid system where processing starts limited and evolves into a coactive 

system cannot be ruled out.  Another apparently more likely possibility is an interactive, separate 

decisions parallel system with negative interactions to begin with, changing to positive 

interactions later on. The interactions cannot have been so great as to force deviations from the 

classical all-negative exhaustive parallel predictions for the SICs, which can occur with extreme 

interactions (Eidels et al., 2011).  

The Accuracy Study 

Inferences from the response probability contrast statistics are in agreement with the 

response time conclusions. The “NO” response probability contrast (NRPC) from the accuracy 

OR experiment is overwhelmingly positive as predicted by the Mulligan and Shaw (1980) 

independent sharing model, which can be viewed as an extension of our independent parallel 

model with first-terminating stopping rule.    

One might hypothesize that in para-threshold conditions the system adopts and favors 

some kind of integration from multiple channels (such as coactivation or weighted integration) to 

improve detection. However, the results from Study II converge with those from Study I to 

falsify the weighted integration model as well as the coactive model. Thus, the operative mode of 

processing, whether stimuli were easy to detect or difficult to perceive, was parallel and close to 

independent (except for few interesting exceptions in the AND case). Capacity (from Study I) 

was either mildly limited, as in the OR design or partly limited, partly super as in the AND case. 

It is worth noting that the parallel theory of Bundesen (e.g., 1990, 1993, Bundesen & 

Habekost, 2008) forms a natural set of parameterized models that, when accompanied by the 

appropriate stopping rule and capacity profile, would appear to make the strong qualitative 

predictions characterizing our data. 
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The next section offers a new analysis which places both the RT and the accuracy based 

models into a common framework and permits an improved theoretical perspective on their 

similarities and differences. 

A Fundamental Distinction among Dynamic Process Models 

Time-Based Process Models. Mulligan and Shaw’s (1980) models, presented in an earlier 

section, may be placed within a class of models we may refer to as “time-based process models”. 

This class of models assumes that there is a distribution on the time allotted for information 

acquisition which is independent of the presented stimulus, and accrued information.  A special 

case ensues when exactly one time interval is deterministically used on each trial.  Consider the 

single channel for the top location but suppress the “top” notation for simplicity.  Now let T be 

the random variable representing the sampling time for a single trial. Then, the probability of a 

NO response at time T = t given the presence of a target A, would be P(NO ∩  t|A) = P(T = t) 

P(NO|A ∩  T = t).  Note that reasonably, the likelihood of a NO response can depend both on the 

sampling interval as well as whether or not a target is present.  A natural instantiation of these 

ideas comes from an information acquisition model where, letting I = information sampled, and 

the criterion for a “YES” decision is c, P(NO|A ∩  T=t) = P(I < c| A ∩  Τ = t).  Thus, P(NO|A) = ∫ 

P(Τ = t) P(I < c| A ∩  Τ = t) dt, where the integral is taken from 0 to +∞ .  The result is the 

marginal probability that the sampled information does not equal or exceed a criterion c, just as in 

the Shaw models.  We can write the latter as P(NO| A) = P(I < c).  Of course, as noted, the 

foregoing describes a single channel.  The stopping rule requires the combinatorial specific to 

that rule.  And of course, the weighted integration model takes an average over the two random 

variables, one for each location in the present experiments. 

Notice that in time-based models the system is considered to sample information for some 

random amount of time. When processing ceases at the end the inspection interval, a decision is 
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made as to whether there is a signal in either position (this response deadline can be internally set 

by the observer or externally dictated by the experimenter). Thus, in this class of models, there is 

no separate channel for “no information”. A channel specific “NO” decision occurs only if the 

signal-present criterion has not been reached.   

Although perhaps not so popular as completion-based models (presented below), there 

have been notable models founded on the concept of sampling information over a time interval. 

The class of RT Distance Hypothesis models can readily be interpreted in this fashion (e.g., 

Ashby & Maddox, 1994).  

Completion-Based Process Models. In a pure “completion-based model”, two processes 

or criteria must be considered.  In such models, the stopping time depends directly on a ‘race’ 

between a “YES” process and a “NO” process.  Otherwise, if there were only a “YES” process 

going on, it would continue until the criterion was reached.  The ‘race’ could well be degenerate:  

With a perfect negative correlation between the YES and NO information acquisition, one has, in 

effect, a random walk (e.g., Link & Heath, 1975) or a diffusion (e.g., Ratcliff, 1978) model.  For 

simplicity, we use the same letters to designate time, information and the criterion.  But, in this 

case, Τ is the random time for the criterion to be reached in contrast to the former class of 

models.  Here then, P(NO| A ∩  Τ = t) = P(ΤNO = t  ∩  ΤYES >t | A), which means that the 

probability of responding “no target” at time t given that target A is actually present is equal to 

the joint probability of the NO process (channel) to complete and the YES process not to 

complete up to t.  Further, P(NO| A) = ∫P(ΤNO = t  ∩  ΤYES >t | A) dt,  where again, the integral is 

taken from 0 to +∞.  We can write the last formula as P(NO| A) = P(ΤNO  <  ΤYES | A).  Of course, 

all this refers to within-channel or stage processing.  We can immediately put these into any type 

of architecture we choose.  All our models considered for the RT experiments are posed as 

completion-based. 
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Figure 6 serves to illustrate the differences between time-based and completion-based 

models. A sufficient description of a time-based model, given two sources of information (say, 

two possible signal positions -- top and bottom), is presented in Figure 6a. There are two parallel 

and independent processing channels, each accumulates evidence in favor of the presence of a 

signal in its respective spatial position. There is no channel, or criterion for “no signal”. A “NO” 

decision (i.e., no signal was displayed on a particular spatial position) occurs if and only if a 

signal-present criterion has not been reached during the sampling interval.  

A schematic for a completion-based model is presented in Figure 6b. There is a total of 

four channels: two parallel and independent channels for each of the two possible signal 

positions. Each processing channel accumulates counts until a prescribed number is reached. The 

upper-most channel in Figure 6b, denoted A, accrues evidence for “target/signal present in top 

position”, and the second channel, denoted ~A, accrues evidence for “no target/signal in top 

position”. The two channels race against one another and the winner determines whether the 

system detects the presence of a signal (channel A wins) or the absence of a signal (~A wins). 

Similarly, channels B and ~B compete to determine whether a target-signal is perceived at the 

bottom. A logical gate then determines whether the system awaits the completion of both races 

before initiating a response (exhaustive processing of both positions, AND rule) or if the system 

halts as soon as the faster of the two race-winners reaches criterion (minimum-time/first-

termination, OR rule). A parametric version of this completion-based model was successfully 

applied by Eidels et al. (2010) to fit data from redundant-target OR and AND conditions. 
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Figure 6. Schematics of a two-channel parallel model (Panel a), a four-channel parallel model 
(Panel b), and a random-walk model (Panel c). Panel a represents a sufficient description of the 
time-based class of models, where evidence from the top and bottom positions are accumulated in 
separate channels. There is no “No Target” channel, so a “NO” response occurs if the total 
evidence did not reach criterion at the end of the inspection interval. Panel b illustrates a potential 
accumulating model, representing the completion-based class of models, where for each position 
there also exists a separate “No Target” channel (accumulator). A “NO” response occurs if the 
“No Target” channel finishes processing before the “Target” channel for that position. The thick 
solid line indicates that processing of the top and bottom positions is done separately, with 
separate OR decision gates; thus, it is impossible to detect both the presence and absence of a 
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target on the same trial (the two events are mutually exclusive). Panel c illustrates a parallel 
arrangements of two random-walk processes, one for the top target and the other for the bottom 
position (see section Summary and Conclusions: Random Walk Models for details). 
 

Hybrid Models. Naturally, models that include aspects of both processes can be formed.  

For instance, a sample time interval could be selected and if either the YES or NO process 

finishes before the sampling interval is over, then the ‘race’ determines the response, but if not, 

the accumulated information (now from each process) determines the response. Or, a dynamic 

system might accumulate information and a monitor might continuously compare that 

accumulated evidence with some (possibly dynamic) standard of acquisition.  If that acquisition 

at any time falls too far below the standard, then the processing ceases, and a response is made on 

the basis of the accrued information.  On the other hand, if the acquisition stays sufficiently close 

to, or exceeds the standard, then the ‘race’ continues until a YES or NO criterion is reached.  This 

type of model, referred to in general as evidence monitoring theory, has undergone quantitative 

definition and simulatory investigation by Townsend and Wenger (1996).  A trivial example of a 

hybrid class that is different from the above processes consists of models where there is a simple 

distribution or a mixture of distributions placed directly on RT, rather than possessing an 

interpretation through time sampling or a stopping time based on reaching a criterion (e.g., see 

Townsend & Ashby, 1983, Chapter 9, Variable State Models). 

Examples of Popular Completion-Based Models 

Having presented the distinction between time- and completion-based models broadly, we 

pose to explore examples of two rather popular classes of completion-based models -- counting 

models and random walk models. We show, either analytically (for the former) or via computer 

simulations (the latter), that they both predict NRPC(OR)>0 and NRPC(AND)<0, much like the 

time-based models studied by Mulligan and Shaw (1980). Thus, these two interesting special 
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cases of completion-based models exemplify model mimicry that will be discussed in the next 

section (and proved in Proposition 2).  

Counting Models. For readers who would like to see a rather general type of counting 

model, but one based on discrete counting processes, we provide an Appendix, where we 

demonstrate with a simple proof that NPRC(OR) > 0 and NRPC(AND) < 0. Figure 6b captures 

the main properties of such model, where for each sources of information (top and bottom 

positions) there also exists a separate channel for “no information”. Each processing channel 

accumulates counts until a prescribed number is reached and the winner of the race determines 

the outcome for this position. Poisson counting processes (e.g., Smith & Van Zandt, 2002; 

Townsend & Ashby, 1983) are natural exemplars of this general set of models.  

Random Walk Models. Ratcliff and Smith (2004), in a thorough review, divided 

sequential sampling models to two major classes: with absolute criterion (the amount of evidence 

in favor of a particular response must reach a prescribed criterion value), and relative criterion 

(evidence for one of the response alternatives must exceed the other by some criterion amount). 

The previously presented counting models form one type of absolute-criterion model. Random 

walk models (e.g., Laming, 1968; Link & Heath, 1975), as well as diffusion models (a-la Ratcliff, 

1978), are members of the relative-criterion models’ class. Processing in random walk models, 

like any other completion-based model, terminates once the amount of accrued evidence reaches 

a specified bound (not at the end of an inspection interval, as suggested by time-based models).  

In adopting the random walk framework for our purposes, the decision as to whether a 

target signal appears on the top position and/or the bottom position is the outcome of separate 

random walk processes. A schematic depiction of such model is presented in Figure 6c. The 

overall architecture is somewhat like that of the counting model (Figure 6b), except that the race 

architectures for the Top and Bottom positions are each replaced by a random walk process. In 
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each of the two random walk processes (top, bottom) evidence is accumulated, in discrete time 

units, by making a step towards one bound ( “YES, target present”, or simply “target”) with 

probability p, or towards the other bound (“no target”) with probability 1-p (see Fific, Nosofsky, 

& Townsend, 2008, for a more detailed description of random-walk simulations). A decision for 

each process is made once it reaches one of the bounds, and a response in the overall system can 

be made after combining the outcomes in a logical AND/OR gate (depending on the stopping 

rule and the nature of the task). 

Figures 7a (OR case) and 7b (AND case) show NRPC results from Monte-Carlo 

simulations of a random walk model, with two separate and parallel random walk processes -- 

one for the top and one for the bottom position. NRPC is overwhelmingly positive for the OR 

case and negative for the AND case for performance that is better chance (probability correct > 

.75). Thus, the simulations of the random walk model reinforce our analytic results. 

 

 

Figure 7. Simulation results of a random walk parallel model (i.e., two simultaneous random-
walk processes -- one for the top position, the other for the bottom position). The No Response 
Probability Contrast, NRPC, is plotted as a function of probability correct for the OR (panel a) 
and AND (panel b) cases. 
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We intimated in previous sections that in the absence of temporal specification in Shaw’s 

models, some models can mimic others. The next section is short, but the messages are important 

and surprising.   

Predictions from Shaw and Colleague’s Time-Based Process Models: Model Mimicking  

First, although Shaw and colleagues do not place restrictions on the architecture 

underlying their models, they initially may seem to appeal for a parallel interpretation (We will 

see that all four models can be equally well viewed as serial processes.   

With regard to the second mimicking issue, recall that Shaw and colleagues do not offer a 

dynamic stochastic account of their model predictions.  Nevertheless, we saw that they turn up as 

natural overall (technically, marginal) probabilities, where a time-based process account is 

averaged across time.  In contrast, completion-based predictions, when averaged across time, 

produce formulas of the ilk, P(The NO random accrual process wins against the YES accrual 

process).  Yet, the time-based process models can be perfectly mimicked by completion-based 

interpretations. For the sake of brevity that still includes an outline of the essentials of proofs, we 

offer the following propositions: 

 PROPOSITION 1:  The Mulligan and Shaw (1980) models, due to absence of temporal 

specification, can all be interpreted as either parallel or serial models. 

Proof:   

A. The Independent-Decision Sharing Model.  The formula for the likelihood of a NO 

response (of course conditional on the stimulus compound) is provided at the top of Table 2. i. 

The parallel interpretation is naturally that each of two channels measures the activation and a 

NO occurs if and only if neither channel equals or exceeds its criterion, in a stochastically 

independent fashion.  ii. The serial interpretation is that, independent of order of processing (see, 

e.g., Townsend & Ashby, 1983), information is acquired on each position (item, etc.) and again, a 
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NO occurs if and only if neither channel equals nor exceeds its criterion, in a stochastically 

independent fashion.   

B. The Independent-Decision All-Or-None Mixture Model (Table 2, second model from 

the top).  i. A possible parallel interpretation is that with probability α  the A channel is 

processed but the B channel is ignored whereas with probability (1- α ), the B channel is 

processed while the A channel is disregarded. ii. The serial account states that with probability α

, channel A is operated on first and the decision is made on the evidence from that channel 

whereas with probability (1- α ), channel B is processed and the decision is determined by the 

result on that channel.  Mathematically, accounts (i) and (ii) are identical.  In both the serial as 

well as the parallel account, the performance is expected to be markedly sub-optimal since the 

evidence from one channel is always ignored (see also Footnote 3). 

C. The Independent-Decision Not All-Or-None Mixture Model (Table 2, third model). 

Unlike (B), this model demands exhaustive processing on each trial, whether serial or parallel. 

With parallel or serial processing, this equation is most naturally viewed as a compound model 

(Townsend & Ashby, 1983, Chapter 5), where different systems, possibly with distinct 

parameters or even architectures are applied from-trial-to-trial. i. The parallel interpretation 

indicates that with probability α , independent simultaneous processing yields both channels as 

not reaching their criteria.  With probability (1- α ) the same type of system, but now with 

reversed criteria is responsible for a failure on each channel to reach its respective criterion.  ii. In 

the serial account, with probability α  the A position is processed first and the B position second 

with criteria βA and βB’ respectively.  In the serial interpretation, with probability (1- α ), the B 

position is processed first and the A second with reversed criteria βB and βA’.     
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D. The Weighted Integration Model.  Here, rather than taking a combination of the 

probabilities or decisions on each position, based on XA, and XB , a weighted combination of the 

actual information, or activation random variables on each position forms a new random variable 

XA + XB, which is then compared with a single criterion.  Hence, 

)])1(([)"(" β<⋅−+⋅= BA XwXwPNOP .  i. The parallel rendition is that the actual outputs of 

each channel are weighted and then added and the decision made.  ii. The serial interpretation 

says that each position is observed one-at-a-time and then the outputs are combined in this 

weighted fashion before the result is compared with a criterion β.  □ 

PROPOSITION 2:  For any given realization of a Time-Based Sampling model for a 2 x 2 

factorial paradigm such as we use here (or that Shaw and colleagues employed), there is always 

a Completion-Based model that is equivalent and vice versa.   

Proof:  

With no loss of generality, we suppose that one channel contains a signal, say the top 

position, while the other, the bottom position, does not (we express this as (A, Ø), meaning that 

there is a signal on the first, top, position and a blank on the second position).  We also invoke 

the non-restriction assumption that the ranges of all the random variables exist on the same 

subsets of the real line. 

The mapping from one type of model to the other and back is straightforward, recalling 

first the appropriate formulas: 

Time Based:   P(NO|(A, Ø)) = P(IA< cA ∩ IB < cB|(A, Ø))   

Completion Based: P(NO|(A, Ø)) = P(ΤA,NO<  ΤA,YES ∩ ΤB,NO <ΤB,YES|(A, Ø)) 

 We then write the transformation that reveals the mimicry  

P(ΤA,NO< ΤA,YES ∩ ΤB,NO <ΤB,YES|(A, Ø)) =  



Evaluating Perceptual Integration 53 

P(ΤA,NO< ΤA,YES | A) P(ΤB,NO <ΤB,YES| Ø) =  

P(ΤA,NO – ΤA,YES + cA < cA | A) P(ΤB,NO – ΤB,YES + cB < cB | Ø) =  

P(IA < cA | A) P(IB < cB| Ø) =  

P(IA < cA ∩ IB < cB|(A, Ø )). 

where we set ΤA,NO – ΤA,YES  +  cA = IA, the information activation random variable for the top 

position and likewise, ΤB,NO –ΤB,YES + cB = IB, the activation random variable for the bottom 

position.  This shows that the Completion-Based class of models mimics the Time-Based class.  

Reversing the map proves that for every Completion-Based model, there is a Time-Based model 

that perfectly mimics it.  □ 

Because we can render the equivalence at a within-channel level, the above equivalence 

also holds at once for other experiments, for example, those based on more than one channel and 

some logical stopping rule.  Thus, the above propositions demonstrate first that serial and parallel 

models cannot be differentiated by the present kind of paradigm, based only on probability of a 

certain response (such as P(NO | TARGET), say) nor can Time-Based from Completion-Based 

models.5 

 

Conclusions 

Overall, the present set of binocular experiments conjoin the accuracy strategy put forth 

by Shaw and colleagues (Mulligan & Shaw, 1980; Shaw, 1982) with our response time 

methodologies to boost support for parallel processing combined with appropriate decision rules 

in both milieus. Although our experiments were quite disparate from those of Mulligan & Shaw 
                                        
5 In fact, it appears that the primary aspects of the models and data tests that suffice to make accurate predictions are:  
A. Context Invariance (e.g., Townsend & Wenger, 2004b; introduced by Colonius (1990) who called this concept 
“Context Independence”).  It simply implies that the marginal probability of, say, P(NO Decision for Channel A | 
Target in Channel A ∩ Target in Channel B) = P(NO in Channel A | Target in Channel A and Blank in Channel B).  
B. Stochastic Independence (e.g., Ashby & Townsend (1986); Luce (1986); Townsend & Ashby (1983)).  That is, 
P(ΤA,NO<  ΤA,YES ∩ ΤB,NO <ΤB,YES|(A, Ø)) = P(ΤA,NO <  ΤA,YES | A) P(ΤB,NO < ΤB,YES| Ø) and so on. 
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(1980), including different retinal locations than theirs (as they called for), our OR accuracy 

findings were the same as theirs.  Serial processing models are decisively falsified by our 

response time methodology. The overall results also disconfirm standard integration or coactive 

theories but the super capacity verdict, for some participants in the AND response time 

experiments calls for further investigation. There is no parameterized process model which 

captures all of the present findings although the Bundesen (e.g., Bundesen, 1990) theory handles 

those results indicating independent, limited capacity parallel processing. 

The General Discussion constructs a general theoretical setting which contains both 

classes of models, time and completion based.  Then, two mimicking theorems are proven for the 

time based models which highlight the value of converging evidence from both RT as well as 

accuracy. 

 With regard to convergent methodologies for identifying architecture, independence, 

decisional stopping rule and workload capacity, the conjoining of response times with accuracy 

appears to auger a promising future. 
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Appendix: “NO” Response Probability Contrast for General Parallel Counting Models 

 

The “NO” Response Probability Contrast, NRPC, with two possible target signals, A and B, can 

be expressed as P[NO|(Ø,Ø)] – P[NO|(A,Ø)] – P[NO|(Ø,B)] + P[NO|(A,B)]. 

 

1. NRPC for the OR case 

Since a “NO” response in an OR task is an event in which the number of counts in the 

channels processing the top position and the bottom position (NA, NB) failed to reach criterion 

(k), we can write the NRPC of a parallel independent model as follows: 

NRPCOR = P[(NA < k| Ø) ∩  (NB < k| Ø)] - P[(NA < k| A) ∩  (NB < k| Ø)]  

   - P[(NA < k| Ø) ∩  (NB < k| B)] + P[(NA < k| A) ∩  (NB < k| B)] 

 

= P(NA < k| Ø) ∙ P(NB < k| Ø) - P(NA < k| A) ∙ P(NB < k| Ø)  

- P(NA < k| Ø) ∙ P(NB < k| B) + P(NA < k| A) ∙ P(NB < k| B) 

 

= P(NB < k| Ø) ∙ [ P(NA < k| Ø) - P(NA < k| A)] 

- P(NB < k| B) ∙ [ P(NA < k| Ø) - P(NA < k| A)] 

 

= [ P(NA < k| Ø) - P(NA < k| A)] ∙ [ P(NB < k| Ø) - P(NB < k| B)] 

 

where P(NA < k| Ø) is the probability that the number of counts in the channel processing the top 

position (NA) had not reached criterion (k) when no target was presented at this position, and 

P(NA < k| A) is the probability of not reaching criterion when a target was presented at the top 
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position. P(NB < k| Ø) and P(NB < k| B) are the corresponding probabilities for the channel 

processing the bottom position. 

 Now, the probability that the number of counts, NA (NB), failed to reach criterion when no 

target was displayed at a particular position has to be larger than the probability of not reaching 

criterion with a target presented at this position, such that P(NA < k| Ø) > P(NA < k| A), and P(NB 

< k| Ø) > P(NB < k| B). Thus, the two square bracketed terms are positive, and so is their product 

-- the NRPCOR. □ Q.E.D. 

 

2. NRPC for the AND case 

 In an AND task a “NO” response is an event in which the number of counts (NA and NB, 

for the top and bottom positions, respectively) in at least one of the processing channels failed to 

reach criterion (k), we can write the NRPC of a parallel independent model as follows: 

 

NRPCAND = P[(NA < k| Ø)U(NB < k| Ø)] - P[(NA < k| A)U(NB < k| Ø)]  

   - P[(NA < k| Ø)U(NB < k| B)] + P[(NA < k| A)U(NB < k| B)] 

 

= P(NA < k| Ø) + P(NB < k| Ø) - P(NA < k| Ø)∙P(NB < k| Ø)  

   - [P(NA < k| A) + P(NB < k| Ø) - P(NA < k| A) ∙ P(NB < k| Ø)]  

- [P(NA < k| Ø) + P(NB < k| B) - P(NA < k| Ø) ∙ P(NB < k| B)]  

+ [P(NA < k| A) + P(NB < k| B) - P(NA < k| A) ∙ P(NB < k| B)] 

 

= P(NB < k| B) ∙ [ P(NA < k| Ø) - P(NA < k| A)] 

- P(NB < k| Ø) ∙ [ P(NA < k| Ø) - P(NA < k| A)] 
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= [ P(NA < k| Ø) - P(NT < k| A)] ∙ [ P(NB < k| B) - P(NB < k| Ø)] 

 

where, as in the OR case, P(NA < k| Ø) is the probability that the number of counts in the channel 

processing the top position (NA) had not reach criterion (k) when no target was presented at this 

position, and P(NA < k| A) is the probability of not reaching criterion when a target was presented 

at the top position. P(NB < k| Ø) and P(NB < k| B) are again the corresponding probabilities for 

the channel processing the bottom position. 

 And, just as in the OR case, the probability that the number of counts, NA (NB), failed to 

reach criterion when no target was displayed at a particular position has to be larger than the 

probability of not reaching criterion with a target presented at this position, such that P(NA < k| 

Ø) > P(NA < k| A), and P(NB < k| Ø) > P(NB < k| B). Thus, the first square bracketed term is 

positive whereas the second term is negative. Their product, the NRPCAND, must be negative.  □ 

Q.E.D 


